

CS	1337.502,504	F16	 Program	#5	 	Page	1	of	2	

Program #5
Due: Tuesday, November 15th, 2016 at 11:30PM

Instructor Dr. Stephen Perkins
Office Location ECSS 4.702
Office Phone (972) 883-3891
Email Address stephen.perkins@utdallas.edu

Office Hours Tuesday and Thursday 10:30am – 11:30am

Tuesday and Thursday 1:00pm – 2:15pm
and by appointment

Grader Section 502: Sai Vamsi Muvva

sxm154231@utdallas.edu
Open Lab 2.103B1

 Section 504: Gopichand Vanka
gxv151030@utdallas.edu
Open Lab 2.104A1
Tuesday/Thursday 3:00pm – 5:00pm

Purpose

Demonstrate the ability to extend and use an abstract class. Demonstrate the advanced feature of
implementing a class that uses the Singleton design pattern. Demonstrate the advanced feature of
implementing a class that uses the Factory Method design pattern. Exercise your new class with a
driver program.

Assignment

We will be creating a useful logging class. This class can be used as a means of advanced
logging in other C++ programs. It will use a factory method design pattern such that debugging
can be implemented with different classes but the main body of code will not know which class it
is using. It will use a singleton design pattern that will allow us to get a logging object from
within whatever function requires logging output.

You are to create an abstract class named CS1337Logger. This class must contain a private
boolean variable named loggingEnabled. You need to define a setter method to set its value. The
constructor for the class should initialize loggingEnabled to false;

You are to create a pure virtual function called displayMessage that takes a const char* as an
argument. This pure virtual function makes the class CS1337Logger an abstract class.

You are to create a logMessage function that will accept a const char* message as an argument.
This method should then check the value of loggingEnabled. If it is true, then you should call the
pure virtual function displayMessage and pass it the const char *.

You must then create two derived classes.

CS	1337.502,504	F16	 Program	#5	 	Page	2	of	2	

The first is called ScreenLogger. It must override displayMessage with the result that the
message is displayed to the screen.

The second is called FileLogger. It must override displayMessage with the result that the
message is displayed BOTH to the screen and to a log file with a fixed name of "Log.txt".
The constructor must open the output file. The singleton pattern will ensure that the open
is only called once.

You must then create a Class called LogSingleton. This class should implement the Singleton design
pattern and should create and return a single instance of either the ScreenLogger or the FileLogger. The
Class should have a private constructor and a static method named GetLogger(). You will hard code
which logging class it will use (ScreenLogger, FileLogger). A single change in your code will
completely change the behavior.

Once your code is implemented, you must create a main routine that demonstrates the use of the log
object returned by the Singleton, enables and disables logging, and displays messages to both files and the
screen. Switching which class the factory method returns will require a recompile and new run of your
program. You should create a few functions that do not do anything other than log messages. You might,
for instance, log the entry into functions and the exit from those functions. Call these functions from
main or within themselves. Some of the functions should get the logger instance from the Singleton and
display log messages. You DO NOT NEED to pass the logger into each function. The goal is to exercise
the logger and show that you can turn logging off and on in various sections of the code.

Requirements

 Your code must extend and use the described abstract debugging class.
 Your code must exhibit the use of the Singleton design pattern
 Your code must exhibit the use of the factory method design pattern.

Deliverables

You must submit your homework through ELearning. You must include your .h and .cpp files.

Notes

No late homework is accepted.

